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ABSTRACT

The performance of a free electron laser strongly depends on the elec-
tron beam quality or brightness. The electron beam is transported into the
free electron laser after it has been accelerated to the desired energy.
Typically the maximum beam brightness produced by an accelerator is con-
strained by the beam brightness delivered by the accelerator injector. Thus
it is important to design the accelerator injector to yield the required
electron beam brightness. The DPC (Darwin Particle Code) computer code has
been written to numerically model accelerator injectors. DPC solves for the
transport of a beam from emission through acceleration up to the full energy
of the injector. The relativistic force equation is solved to determine par-
ticle orbits. Field equations are solved for self consistent electric and
magnetic fields in the Darwin approximation. DPC has been used to inves-
tigate the beam quality consequences of A-K gap, accelerating stress, elec-

trode configuration and axial magnetic field profile.

*Performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48
and for the Department of Defense under DARPA, ARPA Order No. 4395
Amendment 31, monitored by Naval Surface Weapons Center under document
number N60921-85-POW0001; SDIO/BMD-ATC MIPR #M3-RPD-53-A127; and SDIO/NSWC
document number N60921-85-POW0002.






INTRODUCTION

The operation of free electron lasers place constraints on acceptable
input electron beam emittance and quality. To study the effect of various
accelerator injector designs on these parameters an effort is underway to
numerically model the injector. There are many computer codes which have
previously been used to study accelerator injectors and beam transport. The
injector codes can be broadly separated into time-independent and time-
dependent categories. The time-independent or steady-state codes generally
fix electrode voltages and then follow macro-particies or trace single
particle rays until a convergence criteria is satisfied. The object is to
obtain a state which corresponds to the solution a long time after the begin-
ning of a beam pulse. In some cases a steady-state solution is determined
from a prescribed field or current distribution. The numerical model is then
augmented by an analytic theory or perhaps known experimental observations.
In other cases the solution is made self-consistent with fields which are
applied and fields due to all current or charge sources. Use has been made
of time independent results to interpret experiments and conduct scaling
studies.

When physics issues arise which involve inductive effects, in particular
waves, fluctuations, beam interactions with a cavity, or electromagnetic
stability, it is then necessary to resort to a time-dependent simulation.

The most elaborate time-dependent codes self consistently solve Maxwell's
equations and the force equation for a large number of macro-particles.
These particle-in-cell (PIC) simulations have been used advantageously to

study a broad range of electromagnetic phenomenon. Although, the greatest



amount of physics is included in these codes there are several drawbacks. 1In
an explicit solution of Maxwell's equations the time step is restricted by a
Courant condition. In practice the time step must not exceed the mesh size
times the speed of 1ight, which might typically be 10 picoseconds. This
means running a PIC code can be quite expensive. A second disadvantage is
the effect known as excessive bremsstrahlung. Since a PIC simulation always
represents a large number of real particles by a single computational macro-
particle, the numerical fluctuations are anomalously large. Consequently,
unless special precautions are taken, an abnormally large amount of particle
energy is radiated into electromagnetic modes.

In this work the problems of a full electromagnetic simulation are
avoided by using the Darwin field approximation [1-2]. This model has been
implemented for axisymmetric geometry in the DPC (Darwin Particle Code) com-
puter code. The Darwin model is the magnetoinductive 1imit of Maxwell's
equations, which retains the first order relativistic correction to the par-
ticle Lagrangian. This means high frequency phenomena or effects due to
rapid current changes can not be studied with the Darwin model. However,
because wave motion is not followed, the Courant condition of a full electro-
magnetic simulation can be violated. In addition, inductive effects are
modeled without creating non-physical radiation. The DPC code is thus a
useful implementation of a physics model which includes inductive effects
missing from steady-state calculations.

The DPC code solves for beam dynamics over a distance of typically
50 cm. This includes the field emission from a cathode and acceleration up
to the energy of the injector. Particle trajectories are followed from the

emitting surface and past all electrodes including the anode. The DPC



calculation reveals the immediate effect of parameter choices such as the A-K
gap accelerating stress, electrode configuration and axial magnetic field
profile. 1t is these considerations which must be understood to produce
electron beams of high quality or brightness. DPC has the capability of
external magnetic field coils, finite electrode voltage rise times, and
“stair case" shaping of electrodes for geometric effects. For a particular
injector design goal these capabilities permit the evaluation of the effect

on brightness of non-linear applied and self fields.

DPC MODEL

DPC solves the relativistic force equation in cartesian x, vy, z

coordinates,
.’
du _a., a ¢
m dat = ¢ £ + e uxB , (1)
5 =172
where m is particle mass, vy = (1 - (v/c)") , v is velocity, q is charge,
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¢ is the speed of 1light, G»= yv/c, E is the electric field and E is the mag-
netic field. Axisymmetry is assumed so fields are only functions of r and z.
Consistent with this assumption the current and charge density are obtained
from the particles by spreading these quantities in theta.

Fields are obtained from Maxwell's equations in the Darwin approximation.
The practical consequence of the Darwin approximation is the_neg]ect of the
solenoidal part of the displacement current. Denoting solenoidal by subscript

t and irrotational by subscript g Maxwell's equations in the Darwin approxi-

mation are below.
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There are three important points to note concerning the vector decomposition
of Eq. (2) into solenoidal and irrotational components and the neglect of
aEt/at. First, a general magnetic field is strictly solenoidal so it

plays the same role in the general equations as in the Darwin approximation.
Hereafter, Et will be denoted by E. Second, it is possible to derive the
continuity equation from Eq. (2b) by taking the divergence of each side. The
continuity equation is not recovered in other models which neglect the entire
displacement current. Third, a wave equation is usually derived by taking

2E ~ azE/atz. The origin of the

the curl of Faraday's equation Vv
second time derivative term is the solenoidal part of the displacement cur-
rent which is absent in the Darwin approximation. Consequently, in the
Darwin approximation the fundamentally hyperbolic nature of Maxwell's equa-
tions becomes elliptic. This means DPC obtains fields by only solving
elliptic equations. Another viewpoint is that the propagation speed of

electromagnetic modes is taken to be infinite and thus the time-asymptotic

state evolves during each time step.



The Darwin field approximation provides a set of field equations consis-
tent with a Lagrangian correct to order Bz. There are two ways of under-
standing how this approximation impacts Maxwell's equations.

First the part of the Lagrangian, L related to fields consist of a sum

of an electrostatic scalar potential ¢ and a vector potential K.

L~¢+B R . (3)

In general, there are relativistic corrections to both ¢ and K} In the
Coulomb gauge, Vv - K'= 0 and the potential ¢ is known to all orders in

B. Thus, in this gauge L only has relativistic corrections from K. The
Coulomb gauge infinite media, open boundary solution for K scales like B

since j scales like the velocity.
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In Eq. (4) J represents the solenoidal right hand side of Eq. (2b). From Eq.

(4) it can be seen the effect of relativity is contained in the evalution of J

at a retarded time. This means the K required to cause the Lagrangian to be

correct to order B2 is just the unretarded function. To see what is

neglected Eq. (4) can be expanded about the unretarded solution.
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The first neglected term in Eq. (5) scales like a wave number or inverse dis-
tance. This indicates the Darwin approximation is restricted by the allowed
current variation.

The second means of seeing the implication of the Darwin approximation is
to notice the consequence of the solenoidal and irrotational components in

Eq. (2). Because the curl of any vector is solenoidal Eq. (2b) implies,

} - (6)
and thus Eq. (2b) can be written,

v X § = 41rc—] jt . (7)

The curl of Eq. (7) yields an elliptic equation rather than a wave equation so
radiation is absent from the Darwin approximation. Likewise, the curl of Eq.

(2d) yields an elliptic equation for Et rather than a wave equation.

Ve =ame? 2L (8)
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Equation (8) shows Et has the time derivative of Jt as a source. This

N
means the viability of neglecting aE,_/at in Eq. (2b) depends on the size

t
- -
of the time variation of Jt. If the time variation is small, aEt/at
is insignificant and the Darwin approximation is good. Thus, the Darwin
>
approximation is precise when Jt is constant and there is no radiation. The

>

magnitude of Jt may be large in this case. It is then clear the degree of

approximation depends on the amount of current variation.



DPC solves for fields on a rectangular r, z grid which contains an anode,
a cathode and may also contain additional electrodes. Since axisymmetry is
assumed it is not necessary to obtain the solenoidal part of the source terms
to solve Eq. (2b). In the most general Darwin model because the left side of
Eq. (2b) is solenoidal this step is necessary. In the DPC implementation the

>

following two elliptic equations are solved for B,

* - _ 9a
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where ¥g = rBe, ¥y = rA Ae is the theta component of the vector potential

e’
and a* = r2 V. (r_zv . Solving for vy gives B0 and the other two components
are,
£ ay
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Usually, there are solenoids around the injector. A solenoid is modeled as a
finite number of discrete axisymmetric current filaments. The magnetic field
of a solenoid is obtained by summing contributions of each filament using an
analytic formula. The total magnetic field is then the sum of the field from
Eq. (10) plus the solenoid contribution.

The DPC electric field is calculated from equations obtained by letting
EQ = - U¢ in Eq. (2¢) and taking the curl of Eq. (2d), which gives
Eq. (8)



Vo= -dnp . (1)

The time derivative of the current is obtained from moments of the kinetic

equation,

ad_g.a,7 .09,3 (2)

where D is the kinetic stress. To obtain the solenoidal part of 3573t it
is first written as a sum of an irrotational part plus a solenoidal part.

33 a3

= Uy + (at t (13)
The divergence of both sides of Eq. (13) is taken and then a Poisson equation
is solved for . The desired quantity is then obtained by subtraction,
33 _ad
ST L (4

Having obtained sources for Eq (9) and (8) from particle positions and veloc-

ities it is then possible to calculate self consistent fields.
INJECTOR DESIGN STRATEGY

The DPC computer code has been used to evaluate accelerator injector
brightness from the perspective of small and large area cathode emission.

It is known that brightness scales as the inverse square of beam emit-
tance. Contributing factors to the emittance are non-linearities caused by

external magnetic fields and the self fields of the beam. Near the axis



the exact field can be written as an expansion consisting of linear terms plus
non-linear terms which are small. Thus, with a small emitting area the radius
is small and an attempt is made to reduce the effect of brightness degradation
caused by non-linearities. The emitting surface can not be allowed to become
too small or the output current is inadequate. Thus, it is necessary to raise
the current per area emission to large values in this case.

In the designs with large area emission the non-linearity problem can
clearly be troublesome. Consequently, an admission is made that some fraction
of the total beam current is not useful for an FEL. Normally, a beam gen-
erated from a cathode expands due to space charge repulsion as it accel-
erates. To focus the beam external magnetic fields are applied. Several DPC
calculations have shown significant brightness increases by relaxing the
focusing magnetic field and allowing a portion of the beam to be lost. The
conclusion from DPC results is that relaxing the magnetic field reduces avail-
able current, however, the phase space volume decreases more rapidly yielding
a larger brightness.

Common to the strategy of small and large area emission is the issue of
field stress and the injector acceleration gradient. Heuristically, the emit-
tance scales like the product of energy and transverse velocity. Thus, to a
large extent emittance is governed by the radial Lorentz force. Part of the
radial Lorentz force is due to the beam radial electric field (de-focusing)
and the beam theta magnetic field (focusing). These opposing contributions
balance approximately as the inverse square of energy. To minimize the non-
linear self field contribution to emittance, it is therefore advantageous to
increase the energy as rapidly as possible. This means a high field stress
aids high brightness. The maximum field stress is, however, limited by break-

down. Related to field stress is the general question of what acceleration
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gradient yields the highest brightness. A high brightness beam predominantly
has particle trajectories in the longitudinal or z direction. Since it is
desirable to have no rotation in the absence of a magnetic field the initial
acceleration occurs in a small or vanishing magnetic field. The basic
injector design consists of two regions. In the first region the magnetic
field is increasing in magnitude and the beam is accelerated by an applied
potential gradient. In the second region the magnetic field guides the beam
and the potential gradient is reduced to zero. A fundamental property of a
beam is that the radial space charge electric field is always larger than the
self-magnetic pinching force. This means in the first region of the injector
the accelerating potential gradient should be arranged to compensate for the
intrinsic beam divergence. In the second region the magnetic field must be
adjusted to overcome the beam divergence.

The transition from the acceleration region to the second region where
the beam is drifting is accompanied by radial field aberrations. The source
of the aberrations is the presence of the anode entrance. There are two means
of dealing with this problem. First the magnetic profile and accelerating
gradient can be arranged to cause the gradient required at the anode to be
zero. This then invokes a compatible condition with the natural boundary con-
dition which occurs at the anode. Second, a focusing cathode can be employed

to offset the de-focusing effect of the anode aberrations.
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